PENDIDIKAN MATEMATIKA MASA KINI

OLEH: ANGELUS WETO DAN ANGELIA WAKO
Memahami teori tentang bagaimana orang belajar serta kemampuan menerapkannya dalam pengajaran matematika merupakan persyaratan penting untuk menciptakan proses pengajaran yang efektif. 
Berbagai studi tentang perkembangan intelektual manusia telah menghasilkan sejumlah teori belajar yang sangat bervariasi. Walaupun di antara para ahli psikologi, ahli teori belajar, dan para pendidik masih terdapat banyak perbedaan pemahaman tentang bagaimana orang belajar serta metoda paling efektif untuk terjadinya belajar, akan tetapi di antara mereka terdapat juga sejumlah kesepahaman.
PENDIDIKAN MATEMATIKA

Menurut  Bell (1978, h.97), tiap teori dapat dipandang sebagai suatu metode mengorganisasi serta mempelajari berbagai variabel yang berkaitan dengan belajar dan perkembangan intelektual, dan dengan demikian guru dapat memilih serta menerapkan elemen-elemen teori tertentu dalam pelaksanaan pengajaran di kelas.  Bagaimana matematika seharusnya dipelajari? Pertanyaan ini nampaknya sederhana, akan tetapi memerlukan jawaban yang tidak sederhana. 

Karena pandangan guru tentang proses belajar matematika sangat berpengaruh terhadap bagaimana mereka melakukan pembelajaran di kelas, maka mempelajari teori-teori yang berkaitan dengan belajar matematika harus menjadi prioritas bagi para pendidik matematika.

Gagasan tentang belajar bermakna yang dikemukakan oleh William Brownell pada awal pertengahan abad duapuluh merupakan ide dasar dari teori konstruktivisme. Menurut Brownell (dalam Reys, Suydam, Lindquist, & Smith, 1998), matematika dapat dipandang sebagai suatu sistem yang terdiri atas ide, prinsip, dan proses sehingga keterkaitan antar aspek-aspek tersebut harus dibangun dengan penekanan bukan pada memori atau hapalan melainkan pada aspek penalaran atau intelegensi anak. Selanjutnya Reys dkk. (1998) menambahkan bahwa matematika itu haruslah makesense. Jika matematika disajikan kepada anak dengan cara yang demikian, maka konsep yang dipelajari menjadi punya arti; dipahami sebagai suatu disiplin yang terurut, terstruktur, dan memiliki keterkaitan satu dengan lainnya; serta diperoleh melalui proses pemecahan masalah yang bervariasi. 
Dalam NCTM Standards (1989) belajar bermakna merupakan landasan utama untuk terbentuknya mathematicalcon-
nections. 

Untuk terbentuknya kemampuan koneksi matematik tersebut, dalam NCTM Standards (2000) dijelaskan bahwa pembelajaran matematika harus diarahkan pada pengembangan kemampuan berikut: (1) memperhatikan serta menggunakan koneksi matematik antar berbagai ide matematik, (2) memahami bagaimana ide-ide matematik saling terkait satu dengan lainnya sehingga terbangun pemahaman  menyeluruh, dan (3) memperhatikan serta menggunakan matematika dalam konteks di luar matematika.

Selain Brownell, ahli-ahli lain seperti Piaget, Bruner, dan Dienes memiliki kontribusi yang signifikan terhadap perkembangan konstruktivisme. Berdasarkan pandangan ini, pengetahuan matematik dibentuk melalui tiga prinsip dasar berikut ini.
1. Pengetahuan tidak diterima secara pasif. Pengetahuan dibentuk atau ditemukan secara aktif oleh anak. Seperti disarankan Piaget bahwa pengetahuan matematika sebaiknya dikonstruksi oleh anak sendiri bukan diberikan dalam bentuk jadi.
2. Anak mengkonstruksi pengetahuan matematika baru melalui refleksi terhadap aksiaksi yang dilakukan baik yang bersifat fisik maupun mental.  Mereka melakukan observasi untuk menemukan keterkaitan dan pola, serta membentuk generalisasi dan abstraksi (Dienes, 1969, h.181).
3. Bruner (dalam Reys dkk., 1998, h. 19) berpandangan bahwa belajar, merefleksikan suatu proses sosial yang di dalamnya anak terlibat dalam dialog dan diskusi baik dengan diri mereka sendiri maupun orang lain termasuk guru sehingga mereka berkembang secara intelektual.

Prinsip ini pada dasarnya menyarankan bahwa anak sebaiknya tidak hanya terlibat dalam  manipulasi material, pencarian pola, penemuan algoritma, dan menghasilkan solusi yang berbeda, akan tetapi juga dalam mengkomunikasikan hasil observasi mereka, membicarakan adanya keterkaitan, menjelaskan prosedur yang mereka gunakan, serta memberikan argumentasi atas hasil yang mereka peroleh.  Jelaslah bahwa prinsip-prinsip di atas memiliki implikasi yang signifikan terhadap pembelajaran matematika. Prinsip-prinsip tersebut juga mengindikasikan bahwa konstruktivisme merupakan suatu proses yang memerlukan waktu serta merefleksikan adanya sejumlah tahapan perkembangan dalam memahami konsepkonsep matematika. 

Menurut Vygotsky (dalam John dan Thornton, 1993), proses peningkatan pemahaman pada diri siswa terjadi sebagai akibat adanya pembelajaran. Diskusi yang dilakukan antara guru-siswa dalam pembelajaran, mengilustrasikan bahwa interaksi sosial yang berupa diskusi ternyata mampu memberikan kesempatan pada siswa untuk mengoptimalkan proses belajarnya. Interaksi seperti itu memungkinkan guru dan siswa untuk berbagi dan memodifikasi cara berfikir masing-masing. Selain itu terdapat juga kemungkinan  bagi sebagian siswa untuk menampilkan argumentasi mereka sendiri serta bagi siswa lainnya memperoleh kesempatan untuk mencoba menangkap pola berfikir siswa lainnya. Episode seperti ini, diyakini akan dapat meningkatkan pengetahuan serta pemahaman tentang obyek yang dipelajari dari tahap sebelumnya ke tahapan yang lebih tinggi. Proses yang mampu menjembatani siswa pada tahapan belajar yang lebih tinggi seperti ini menurut Vygotsky (1978) disebut sebagai zoneofproximaldevelopment (ZPD).

Menurut Vygotsky, belajar dapat membangkitkan berbagai proses mental tersimpan yang hanya bisa dioperasikan manakala seseorang berinteraksi dengan orang dewasa atau berkolaborasi dengan sesama teman. 
Pengembangan kemampuan yang diperoleh melalui proses belajar sendiri (tanpa bantuan orang lain) pada saat melakukan pemecahan masalah disebut sebagai actualdevelop-ment, sedangkan perkembangan yang terjadi sebagai akibat adanya interaksi dengan guru atau siswa lain yang mempunyai kemampuan lebih tinggi disebut potentialdevelopment. 
Zone of proximal development selanjutnya diartikan sebagai jarak antara actual development dan potential development.

Vygotsky (dalam John dan Thornton, 1993) selanjutnya menjelaskan bahwa proses belajar terjadi pada dua tahap: tahap pertama terjadi pada saat berkolaborasi dengan orang lain, dan tahap berikutnya dilakukan secara individual  yang di dalamnya terjadi proses internalisasi. Selama proses interaksi terjadi baik antara guru-siswa maupun antar siswa, kemampuan berikut ini perlu dikembangkan: saling menghargai, menguji kebenaran pernyataan fihak lain, bernegosiasi, dan saling mengadopsi pendapat yang berkembang.

Selain adanya tahapan perkembangan dalam memahami konsep-konsep matematika, terdapat juga tahapan perkembangan dalam kaitannya dengan intelektual atau kognitif anak seperti yang dikemukakan oleh Piaget, Bruner, dan Dienes. Sekalipun tahapan perkembangan yang dikemukakan oleh mereka masing-masing berbeda, akan tetapi kerangka dasar yang dikemukakan ketiganya pada prinsipnya adalah sama. Menurut Piaget perkembangan intelektual anak mencakup empat tahapan yaitu sensori motor, preoperasi, operasi kongkrit, dan operasi formal. 

Selain itu, Piaget (dalam Bell, 1978) juga menyatakan bahwa perkembangan intelektual anak merupakan suatu proses asimilasi dan akomodasi informasi ke dalam struktur mental. Asimilasi adalah suatu proses dimana informasi atau pengalaman yang diperoleh seseorang masuk ke dalam struktur mentalnya, sedangkan akomodasi adalah terjadinya restrukturisasi dalam otak sebagai akibat adanya informasi atau pengalaman baru. 
Piaget selanjutnya menjelaskan bahwa perkembangan mental seseorang dapat dipengaruhi oleh beberapa faktor yakni kematangan, pengalaman fisik, pengalaman matematis-logis, transmisi sosial (interaksi sosial), dan keseimbangan.
Bruner mengemukakan bahwa perkembangan intelektual anak itu mencakup tiga tahapan yaitu enaktif, ikonik, dan simbolik. Pada tahap enaktif, anak biasanya sudah bisa melakukan manipulasi, konstruksi, serta penyusunan dengan memanfaatkan benda-benda kongkrit. 
Pada tahap ikonik, anak sudah mampu berfikir representatif yakni dengan menggunakan gambar atau turus. Pada tahap ini mereka sudah bisa berfikir verbal yang didasarkan pada representasi benda-benda kongkrit. Selanjutnya pada tahap simbolik, anak sudah memiliki kemampuan untuk berfikir atau melakukan manipulasi dengan menggunakan simbol-simbol.
Sementara itu Dienes berpandangan bahwa belajar matematika itu mencakup lima tahapan yaitu bermain bebas, generalisasi, representasi, simbolisasi, dan formalisasi. Pada tahap bermain bebas anak biasanya berinteraksi langsung dengan benda-benda kongkrit sebagai bagian dari aktivitas belajarnya. Pada tahap berikutnya, generalisasi, anak sudah memiliki kemampuan untuk mengobservasi pola, keteraturan, dan sifat yang dimiliki bersama. Pada tahap representasi, anak memiliki kemampuan untuk melakukan proses berfikir dengan menggunakan representasi obyek-obyek tertentu dalam bentuk gambar atau turus. Tahap simbolisasi, adalah suatu tahapan dimana anak sudah memiliki kemampuan untuk menggunakan simbol-simbol matematik dalam proses berfikirnya. 
Sedangkan tahap formalisasi, adalah suatu tahap dimana anak sudah memiliki kemampuan untuk memandang matematika sebagai suatu sistem yang terstruktur. Berdasarkan pandangan yang dikemukakan oleh Piaget, Bruner, dan Dienes di atas, dapat diperoleh hal-hal berikut ini.
1. Anak dapat secara aktif terlibat dalam proses belajar dan kesempatan untuk mengemukakan ide-ide mereka merupakan hal yang sangat esensial dalam proses tersebut.
2. Terdapat sejumlah karakteristik dan tahapan berfikir yang teridentifikasi dan dapat dipastikan bahwa anak melalui tahapan-tahapan tersebut.
3. Belajar bergerak dari tahapan yang bersifat kongkrit ke tahapan lain yang lebih abstrak.
4. Kemampuan untuk menggunakan simbol serta representasi formal secara alamiah berkembang mulai dari tahapan yang lebih kongkrit.
Pengajaran yang efektif antara lain ditandai dengan keberhasilan anak dalam belajar. Dengan demikian untuk berhasilnya pengajaran matematika, pertimbanganpertimbangan tentang bagaimana anak belajar merupakan langkah awal yang harus diperhatikan. Dalam upaya untuk melakukan hal tersebut, diperlukan beberapa  prinsip dasar seperti yang akan dibahas di bawah ini. Prinsip-prinsip tersebut  merupakan implikasi dari teori belajar yang telah dikemukakan sebelumnya.
Siswa Terlibat Secara Aktif Prinsip ini berlandaskan pada pandangan bahwa keterlibatan anak secara aktif dalam suatu aktivitas belajar memungkinkan mereka memperoleh pengalaman yang mendalam tentang bahan yang dipelajari, dan pada ahirnya akan mampu meningkatkan pemahaman anak tentang bahan tersebut. 
Sebagaimana pepatah cina yang menyatakan bahwa ”Saya mendengar dan saya lupa; saya melihat dan saya ingat; serta saya mencoba dan saya mengerti”, mengisyaratkan bahwa keterlibatan secara aktif merupakan hal yang sangat penting dalam membangun pemahaman tentang sesuatu yang dipelajari. Keterlibatan siswa secara aktif bentuknya bisa secara fisik, dan yang lebih penting lagi secara mental. 
Bentuk-bentuk aktivitasnya antara lain bisa berupa interaksi siswa-siswa atau siswa-guru, memanipulasi benda-benda kongkrit seperti alat peraga, dan menggunakan bahan ajar tertentu seperti buku dan alat-alat teknologi. Memperhatikan Pengetahuan Awal Siswa Karena sifat matematika yang merupakan suatu struktur yang terorgani-sasikan dengan baik, maka pengetahuan prasyarat siswa merupakan hal penting yang harus diperhatikan dalam proses pembelajaran matematika. 
Pendekatan spiral yang dikembangkan dalam pengajaran matematika, merupakan langkah tepat untuk memberi kesempatan kepada anak mengembangkan pengetahuannya secara bertahap baik horizontal maupun vertikal. 
Dengan memperhatikan pengetahuan awal siswa, guru diharapkan mampu menyusun strategi pembelajaran lebih tepat yang meliputi penyiapan bahan ajar, penyusunan langkah-langkah pembelajaran, serta penyiapan alat evaluasi yang sesuai.
Mengembangkan Kemampuan Komuni-kasi Siswa Salah satu syarat untuk berkembangnya kemampuan interaksi antara satu individu dengan individu lainnya adalah berkembangnya kemampuan komunikasi. 
Beberapa hal yang bisa dilakukan untuk mengembangkan kemampuan tersebut antara lain adalah memberikan kesempatan kepada siswa untuk menjelaskan dan berargumen-tasi secara lisan atau tertulis, mengajukan atau menjawab pertanya-an, dan berdiskusi baik dalam kelom-pok kecil maupun kelas.
Mengembangkan Kemampuan Metakognisi Siswa. Metakognisi adalah suatu istilah yang berkaitan dengan apa yang diketahui seseorang tentang individu yang belajar dan bagaimana dia mengontrol serta menyesuaikan prilakunya. Selain itu, metakognisi juga merupakan bentuk kemampuan untuk melihat pada diri sendiri sehingga apa yang dia lakukan dapat terkontrol secara optimal. Dengan kemampuan seperti ini maka siswa dimungkinkan mengembangkan kemampuannya secara optimal dalam belajar matematika, karena dalam setiap langkah yang dia kerjakan senantiasa muncul pertanyaan seperti: “Apa yang saya kerjakan?”, “Mengapa saya mengerjakan ini?”, “Hal apa yang bisa membantu saya menyelesaikan masalah ini?”
Mengembangkan Lingkungan Belajar yang Sesuai Lingkungan belajar hendaknya diciptakan sesuai dengan kebutuhan siswa dalam belajar. Terciptanya lingkungan belajar yang baik dapat membantu siswa dalam mencapai perkembangan potensialnya seperti yang dikemukakan oleh Vygotsky.  
 Selain beberapa prinsip di atas, berdasarkan teori Vygotsky, diperoleh tiga hal utama yang berkaitan dengan pembelajaran yakni:
(1) pembelajaran efektif mengarah pada perkembangan,
(2) pembelajaran efektif akan berhasil dikembangkan melalui setting pemecahan masalah, dan
(3) pembelajaran efektif berfokus pada upaya membantu siswa untuk mencapai potential development mereka.
Untuk mencapai pembelajaran efektif tersebut maka beberapa saran berikut nampaknya penting untuk diperhatikan: (1) tingkatkan sensitivitas bahwa siswa terlibat secara aktif dalam setting belajar yang dikembangkan,
(2) ciptakan problem solving interaktif yang mengarah pada proses belajar,
(3) sajikan soal-soal yang bersifat menantang,
(4) gunakan ongoingassessment untuk memonitor pembelajaran,
(5) ciptakan kesempatan bagi siswa untuk menampilkan kemampuan berfikir tingkat tingginya,
(6) beri dorongan serta kesempatan pada siswa untuk menampilkan berbagai solusi serta strategi berbeda pada penyelesaian suatu masalah,
(7) tingkatkan komunikasi, yakni dengan mendorong siswa untuk memberikan penjelasan serta jastifikasi pemikiran mereka,
(8) gunakan berbagai variasi strategi mengajar dan belajar, dan
(9) upayakan untuk menelusuri hal-hal yang belum diketahui siswa sehingga guru mampu membantu proses peningkatan potensial mereka.
Dalam kajiannya tentang implikasi pandangan konstruktivisme untuk pencapaian hasil belajar dalam matematika, Burton (1992) mengajukan suatu model pengimplementasian kurikulum yang memuat tiga dimensi yakni dimensi silabi, pedagogi, dan evaluasi. Dalam model ini, silabi dimaknai sebagai sesuatu yang diharapkan tercapai oleh kurikulum, pedagogi adalah cara yang digunakan dalam proses pembelajaran, sedangkan evaluasi adalah rangkaian strategi yang digunakan guru, siswa, atau fihak lain untuk mengetahui sejauh mana hasil belajar yang sudah dicapai. Akar epistimologis dari interpretasi konstruktivis terhadap pembelajaran matematika, juga merupakan hal yang sangat penting dalam pengembangan model pembelajaran matematika.
Dalam hal ini, Barbin (1992) mengemukakan bahwa terdapat dua kemungkinan konsepsi yang bisa muncul yakni pengetahuan matematika dipandang sebagai produk dan proses. Dalam konsepsi pertama, matematika dipandang sebagai suatu sistem yang sudah baku dan siap pakai, sedangkan konsepsi kedua lebih menitik beratkan pada matematika sebagai suatu aktivitas (mathematicalactivity).

Komentar

Postingan populer dari blog ini

BUMDES EKOROKA CIPTAKAN LAPANGAN KERJA BAGI MASYARAKAT